CURRICULUM VITAE

Junhyeok Ahn

20 Cooper St Unit 339, Waltham, MA 02453

Tel: (512) 902-0530 / Email: junhyeokahn91@gmail.com / Homepage: https://junhyeokahn.github.io/

EDUCATION

Aug. 2016 – Jul. 2022	The University of Texas at Austin, Austin, TX
	Doctor of Philosophy in Mechanical Engineering Advisor: Luis Sentis
Mar. 2010 – Feb. 2016	Hanyang University, Seoul, Korea
	Bachelor of Science in Mechanical Engineering

WORK AND RESEARCH EXPERIENCE

Aug. 2022 – Present	Senior Software Engineer Boston Dynamics, <i>Waltham, MA</i>
Aug. 2017 – Jul. 2022	Graduate Research AssistantThe University of Texas at Austin, <i>Austin, TX</i>Planning, control, optimization, and machine learning algorithms for legged robots
Jun. 2017 – Aug. 2017	Research InternApptronik Inc., <i>Austin, TX</i>Low-level actuator controller and a high-level whole-body control for humanoids.

PUBLICATIONS

- 1. J. Ahn, S. H. Bang, C. Gonzalez, Y. Yuan, and L. Sentis, "Data-Driven Safety Verification and Explainability for Whole-Body Manipulation and Locomotion", in 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids), 2022
- 2. J. Ahn, S. J. Jorgensen, S. H. Bang, and L. Sentis, "Versatile locomotion planning and control for humanoid robots," *Frontiers in Robotics and AI*, vol. 8, 2021.
- 3. J. Ahn and L. Sentis, "Nested mixture of experts: Cooperative and competitive learning of hybrid dynamical system," in *Proceedings of the 3rd Conference on Learning for Dynamics and Control*, vol. 144. PMLR, 07 08 June 2021, pp. 779–790.
- 4. J. Lee, J. Ahn, E. Bakolas, and L. Sentis, "Reachability-based trajectory optimization for robotic systems given sequences of rigid contacts," in 2020 American Control Conference (ACC), 2020, pp. 2158–2165.
- 5. D. Kim, S. J. Jorgensen, J. Lee, **J. Ahn**, J. Luo, and L. Sentis, "Dynamic locomotion for passive-ankle biped robots and humanoids using whole-body locomotion control," *The International Journal of Robotics Research*, vol. 39, no. 8, pp. 936–956, 2020.
- 6. J. Ahn, J. Lee, and L. Sentis, "Data-efficient and safe learning for humanoid locomotion aided by a dynamic balancing model," *IEEE Robotics and Automation Letters*, vol. 5, no. 3, pp. 4376–4383, 2020.
- J. Ahn, D. Kim, S. Bang, N. Paine, and L. Sentis, "Control of a high performance bipedal robot using viscoelastic liquid cooled actuators," in 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), 2019, pp. 146–153.
- 8. D. Kim, J. Lee, J. Ahn, O. Campbell, H. Hwang, and L. Sentis, "Computationally-robust and efficient prioritized whole-body controller with contact constraints," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 1–8.
- 9. J. Ahn, O. Campbell, D. Kim, and L. Sentis, "Fast kinodynamic bipedal locomotion planning with moving obstacles," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 177–184.

- D. Kim, J. Ahn, O. Campbell, N. Paine, and L. Sentis, "Investigations of a robotic test bed with viscoelastic liquid cooled actuators," *IEEE/ASME Transactions on Mechatronics*, vol. 23, no. 6, pp. 2704–2714, 2018. (Best Paper Award)
- 11. D. Kim, O. Campbell, J. Ahn, L. Sentis, and N. Paine, "Investigations of viscoelastic liquid cooled actuators applied for dynamic motion control of legged systems," in 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), 2017, pp. 710–717.

PREPRINTS

1. S. J. Jorgensen, O. Campbell, T. Llado, D. Kim, J. Ahn, and L. Sentis, "Exploring model predictive control to generate optimal control policies for hri dynamical systems," 2017.

TEACHING EXPERIENCE

Jan. 2021 – May. 2021	 Graduate Teaching Assistant The University of Texas at Austin, Aerospace Engineering & Engineering Mechanics, <i>Austin, TX</i> Decision and Control of Human-Centered Robots (ASE389)
Jan. 2017 – May. 2017	Graduate Teaching Assistant The University of Texas at Austin, McCombs School of Business, <i>Austin, TX</i>
	Data Mining (MIS373)
SKILLS	
Program Language	Python, C++, Matlab
Library	Dart, Pybullet, Mujoco, Tensorflow, ZeroMQ
SOFTWARES	
PnC	C++ library designed for generating trajectories for a robot system and stabilizing the system over the trajectories. (https://github.com/junhyeokahn/PnC)
PyPnC	Python implementation of PnC. (https://github.com/junhyeokahn/PyPnC)
tf_rbdl	Tensorflow-based rigid body dynamics algorithms. (https://github.com/junhyeokahn/tf_rbdl)