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This paper proposes an online gain adaptation approach to enhance the robustness of
whole-body control (WBC) framework for legged robots under unknown external force
disturbances. Without properly accounting for external forces, the closed-loop control
system incorporating WBC may become unstable, and therefore the desired task goals
may not be achievable. To study the effects of external disturbances, we analyze the
behavior of our current WBC framework via the use of both full-body and centroidal
dynamics. In turn, we propose a way to adapt feedback gains for stabilizing the controlled
system automatically. Based on model approximations and stability theory, we propose
three conditions to ensure that the adjusted gains are suitable for stabilizing a robot under
WBC. The proposed approach has four contributions. We make it possible to estimate the
unknown disturbances without force/torque sensors. We then compute adaptive gains
based on theoretic stability analysis incorporating the unknown forces at the joint actuation
level. We demonstrate that the proposed method reduces task tracking errors under the
effect of external forces on the robot. In addition, the proposed method is easy-to-use
without further modifications of the controllers and task specifications. The resulting gain
adaptation process is able to run in real-time. Finally, we verify the effectiveness of our
method both in simulations and experiments using the bipedal robot Draco2 and the
humanoid robot Valkyrie.
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1 INTRODUCTION

Stability analysis for efficient whole-body control (WBC) of humanoid robots is important to execute
robustly multiple tasks in bipedal and humanoid robots. Most WBC approaches face difficulty
ensuring the stability at the closed loop systems due to intricate control structures. For this reason,
bipedal and humanoid robot stability is frequently studies in task-space, based on constant feedback
gains. However, these feedback gains defined a priori might be inappropriate to track the planned
motions robustly and stabilize the robot’s behaviors under unknown external disturbances. This
paper proposes an online gain adaptation method based on stability analysis of the closed-loop
robotic system viaWBC. A basic assumption of our problem is that there are no force/torque sensors
to measure both contact forces and external force disturbances. Our online gain adaptation approach
utilizes three methods: 1) a WBC controller, dubbed Whole-Body Locomotion Controller (WBLC),
2) a Centroidal dynamic model, and 3) various approximation techniques.
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1.1 Whole-Body Control
Legged humanoid robots need to deliver stable and robust legged
manipulation (also referred to as loco-manipulation) behaviors
while operating in unstructured environments. For this purpose,
Whole-Body Control (WBC) enables the generation of control
commands for tracking multiple task trajectories effectively
Khatib et al. (2004). Most WBC frameworks rely on dynamic
models of the robot and classical control laws such as
proportional-derivative (PD) control Feng et al. (2015) or
impedance control Albu-Schäffer et al. (2007). Based on these
requirements, projection-based WBC approaches have been
widely used due to their intuitive, concise, and computationally
efficient form. However, more versatile algorithms are frequently
needed to consider inequality and unilateral constraints Lee et al.
(2012) such as Contact Wrench Cone (CWC) constraints Caron
et al. (2015). Optimization-based approaches have been widely used
to incorporate inequality constraints explicitly Escande et al. (2014);
Hong et al. (2020); Feng et al. (2014); Wiedebach et al. (2016); Kim
et al. (2020). However, there is a major challenge for these
optimization-based WBC approaches: how can we ensure the
desired task hierarchy and how can we guarantee system stability
when there exist uncertain external forces?

A well-known method to enforce task priorities employs
hierarchical quadratic programming (HQP) Escande et al. (2014);
Hong et al. (2020). In Feng et al. (2014);Wiedebach et al. (2016), the
authors employ a single quadratic program (QP) with different
weighted cost terms to impose a task hierarchy. These types of
controllers that employ a single QP process reduce the number of
optimizations compared with HQP and enforce the task hierarchy
in an implicit manner; however, the weights are heuristic, resulting
in occasional violations of the priorities. Often, there is a discrepancy
between the desired configuration and the result from the WBC
optimization. The joint acceleration, which is one of the results from
the WBC optimization process, can be numerically integrated to
resolve this problem Kuindersma et al. (2016); Koolen et al. (2016);
Ahn et al. (2021). Alternatively, this problem can be solved by
directly re-optimizing the trajectories considering dynamic
reachability Lee et al. (2020). Another approach is to have WBC
incorporate both internal and external force/torque measurements
via embedded sensors within themechanical actuation/transmission
system Nori et al. (2015). These sensors can be used to improve the
stability of the robots via their WBC controllers.

In general, it is complex to analyze the stability of robots
controlled by the WBC approaches. For instance, stability of a
priority-based kinematic control approach is verified based on
Lyapunov stability in Antonelli (2009). Also, it is shown that the
robot controlled by the operational space control framework is
asymptotically stable Dietrich et al. (2018). However, the above
stability analysis studies do not consider floating-base dynamics
of the legged robot and the presence of unknown external
disturbances. Compared with the above stability analysis
which are applied to projection-based approaches, the stability
analysis of optimization-based WBC approaches is more
complicated to perform when considering external
perturbations. We previously proposed an optimization-based
WBC method dubbed WBLC, that combines both a projection-
based controller and an optimization technique to enforce task

priorities while satisfying inequality constraints Kim et al. (2020).
TheWBLC framework combines a whole-body kinematic controller
and a whole-body dynamic controller to compute joint position,
velocity, acceleration, and torque references in real-time as shown in
Figure 1. WBLC has successfully demonstrated dynamic
locomotion of passive ankled robots. However, the robustness of
WBLC regarding the external disturbances mostly relies on the
experts’ parameter tuning in experiments. Also, we did not address
the theoretic stability analysis in our previous workKim et al. (2020).
In this paper, we will analyze here our WBLC framework for
ensuring stability and tracking performance under external
forces. This is key since if WBLC is affected by unknown
external forces, the robot could easily lose balance.

1.2 Robots With External Disturbances
Compared to other methods which focus on push recovery, here we
focus on adaptive control as a means to deal with external forces.
Some push recovery methods employ linear MPC to obtain CoM
and foot trajectories based on the Zero Moment Point (ZMP)
dynamics to re-plan walking behaviors for disturbance recovery
Mason et al. (2018). The desired recovery force associated with the
ZMP condition is converted to CoM positions Wang et al. (2014). It
has been widely investigated how to determine stepping motions for
balance recovery such as Push Recovery Model Predictive Control
(PR-MPC) Stephens and Atkeson (2010b) and Capture Point
control Pratt et al. (2006). Although these strategies have
accomplished successful results, they are based on motion
generation instead of modifying feedback gains or impedances.
However, the latter strategy considered in this paper can provide
a layer of additional robustness. Indeed, it is not always needed to
perform an additional stepping motion to recover from external
forces. If the external or contact forces are not adequately
compensated for or there exist unknown external forces, the
controllers may be unstable regardless of the recovery strategy
Nakanishi et al. (2008).

One solution to this problem is to compensate for external
forces. This has been often studied as a compliant control
problem for balancing despite the external forces Hyon et al.
(2007); Stephens and Atkeson (2010a); Ott et al. (2011); Herzog
et al. (2016). A key idea of the above researches is to obtain proper
ground reaction forces keeping the balance against the external
force then the forces are utilized to compute the control
command torque Hyon et al. (2007); Ott et al. (2011). LQR is
employed for better momentum control of a torque-controlled
humanoid and they show robust performance on balancing in the
face of unknown disturbances Herzog et al. (2016). A common
point of the above researches is that they rely on constant gains or
impedances. Although the above researches have accomplished
practical balancing ability, the stability of the controlled robots
are not proven at the actuation level yet when the external forces
are applied to the robots. Furthermore, they also need to modify
or replan the task specifications such CoM and angular
momentum for keeping the robot’s balance. By contrast, our
work does not require this replanning step.

Another solution to the above problem is to directly measure
external forces/moments using an F/T sensor Käslin et al. (2018)
or internal, tactile, and F/T sensors, simultaneously Ivaldi et al.
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(2011). However, it is normally challenging to attach F/T sensors
everywhere in the robot’s body. An alternative method is to
accurately estimate external forces and the corresponding ground
reaction forces relying on the dynamic model of the robot Xin
et al. (2018). For humanoid robotic applications, an external
force/moment can be estimated based on an extended Kalman
filter using whole-body dynamics, force sensor on the feet, and an
IMUBenallegue et al. (2018). In some cases, external forces can be
measured using force-sensing resistors Hawley et al. (2019) on the
feet. We can also deploy adaptive control approaches for
stabilizing the robots without direct estimation of the external
forces. A robust and adaptive control approach was proposed
without using the robot’s dynamic model to guarantee stable
control performance under uncertain disturbances Lee et al.
(2016). This approach shows the robustness of WBC with
respect to impact disturbance at the task level.

1.3 Contributions
Overall, this paper proposes a unique gain adaptation approach for
WBLC applied to legged robots under both contact and external
forces. More specifically, we aim to enhance the robot’s balance and
robust performance by guaranteeing feedback system stability under
unknown external forces. To do that, we leverage the WBLC as
proposed in Kim et al. (2020). Then, we approximately decouple the
joint-space dynamics and analyze their closed-loop stability.
Compared to other approaches such as Lee et al. (2016), we
adapt the feedback gains to make the closed-loop system
critically damped at the joint level. This results in four contributions.

• Firstly, the proposed adaptation approach is very intuitive
and straightforward to be implemented. Our method does
not require any modification of the task specifications
defined a priori. Without any significant modifications to
the controller and planners, it is also possible to employ
classical WBC methods Kim et al. (2020) for controlling the
robot in the presence of unknown external forces.

• Second, the proposed WBLC approach also improves task
tracking performance with respect to external disturbances.
This improvement results in the robot’s ability to improve
its balance and provide more robust bipedal walking.

• Third, we provide a joint-level control stability study of robots
perturbed by external forces. There exist a number of studies

considering the stability of legged robots performed at the
force or task/operational space level. These types of stability
analysis cannot ensure whole-body stability involving
actuation effects since those take place at the joint level.

• Lastly, the proposed online gain adaptation method is
designed to be easy-to-use. We do not need to rely on F/T
sensors and a complicated estimation process to stabilize the
robot system due to our use of centroidal robot dynamics.

In this paper, our primary task is to control the position of the
CoM, keeping balance in the double support phase and to stably
walk against the external disturbances. Many studies on legged
robots such as push recovery and reactive planning have
addressed keeping balance while standing and walking.
Regarding reactive planning processes, they do not change
low-level controller feedback gains as we do and instead
modify the desired task specifications or trajectories in the
presence of the perturbations. Therefore, in such methods, it is
hard to guarantee the closed-loop stability of the robot while
tracking the desired task trajectories. By contrast, our method
stabilizes the robot against the external disturbance by adapting
the feedback gains without further modification of task
trajectories. For this reason, we can ensure the closed-loop
stability of the robot while the external disturbance is applied
to the robot. Our proposed approach is therefore simpler and
more intuitive than reactive planning approaches and it can also
be used in combination with them to enhance their performance.

The remainder of this paper is organized as follows. Section 2
explains the preliminaries related to a QP-based WBC approach,
e.g., WBLC and the Centroidal Dynamic model. The proposed
approach is explained in Section 3. In Section 4, we apply the
proposed adaptive approach to a legged robotDraco2 to show the
effectiveness of the proposed method in numerical simulations
and hardware experiments.

2 PRELIMINARIES

In section 2.1, we first review our previous WBLC. Then, in
section 2.2, we thoroughly analyze the closed-loop behavior of
robots with no external perturbations aside from the ground
forces needed to balance.

FIGURE 1 | Block diagram of the proposed approach: The proposed approach includes various feedback loops, inside and outside the whole-body locomotion
controller (WBLC) Kim et al. (2020). Our adaptive approach is tasked with modifying feedback gains inside WBLC.
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2.1 QP-Based Whole-Body Locomotion
Control
We review here the structure of our previous WBC controller.
Given a configuration spaceQ ⊆ Rn and an input space U ⊆ Rnu ,
the rigid-body dynamics of a robot is described as follows:

M q( )€q + B q, _q( ) � S⊤Γ + J⊤c q( )Fc (1)

Where q ∈ Q, M(q) ∈ Sn++, B(q, _q) ∈ Rn, and Γ ∈ U denote the
joint position vector, mass/inertia matrix, sum of Coriolis/
Centrifugal and gravity forces, and torque command,
respectively. Considering six DOFs virtual joints for the
floating base, nu � n − 6, we can define the selection matrix
S � [0nu×6 Inu×nu] ∈ Rnu×n. Fc ∈ R6m is a vertically concatenated
contact force vector and the corresponding contact Jacobian is
represented as Jc(q) ∈ R6m×n where m is the number of contacts.
A standard feedback control scheme can be designed in the joint
space using a PD control law:

Γcmd � SM q( ) Kpeq + Kd _eq( ) + Γ̂
d

(2)

Where eq � qd − q, and _eq � _qd − _q. Also, qd ∈ Q, _qd ∈ Rn, Kp �
diag(kp1, . . . , kpn) and Kd � diag(kd1, . . . , kdn) denote desired
joint position, desired joint velocity, proportional gain matrix
and derivative gain matrix, respectively. Γ̂

d
represents a

feedforward torque command generated by the Dynamic-level
WBC control block shown in Figure 1. Using a hierarchical
inverse kinematic control scheme, we can compute qd and _qd

given task specifications, xd, _xd, and €xd. Let us consider N
hierarchical tasks in a lexicographic order. The desired joint
position is obtained by qd � q + Δq where Δq � ∑N

k�1Δqk and

Δqk � Jk|k−1 q( )+ exk − Jk q( )Δqk−1( ),
Nk q( ) � Nk−1 q( ) − Jk|k−1 q( )+Jk|k−1 q( ) (3)

Where Jk|k−1(q) � Jk(q)Nk−1(q), exk � xdk − xk and N0(q) � I. In
addition, _qd and €qd can be simply computed as _qd � ∑N

k�1 _q
d
k and

€qd � ∑N
k�1€q

d
k where

_qdk � Jk|k−1 q( )+ _xdk − Jk q( ) _qd
k−1( ),

€qdk � Jk|k−1 q( )+ €xdk − _Jk q, _q( ) _q − Jk q( )€qd
k−1( ), (4)

_qd0 � 0, and €q0 � 0. Based on derivations of qd, _qd, and €qd, an
additional optimization problem is formulated to handle full-
body dynamics of the robot, contact wrench cone constraints, and
torque limits as described in Kim et al. (2020), i.e.:

min
Fc,€xc ,δ€q

F⊤
c WFFc + €x⊤c Wc€xc + δ€q⊤W€qδ€q

s.t. M q( )€q + B q, _q( ) � S⊤Γ + J⊤c q( )Fc,
€xc � Jc q( )€q + _Jc q, _q( ) _q,
€q � €qd + Kh

peq + Kh
d _eq + δ€q,

U q( )Fc ≥ 0,
Γmin ≤ Γ≤ Γmax

(5)

WhereWF ∈ S6m+ ,Wc ∈ S6m+ , andW€q ∈ Sn+ are weightingmatrices
for the objective function. Kh

p � diag(khp1
, . . . , khpn

) and Kh
d �

diag(khd1 , . . . , khdn ) are feedback gains in the optimization
problem. U(q) ∈ R17 is a matrix for expressing the contact
wrench cone constraints and upper bounds of the reaction

forces for smooth contact changes. Γmin and Γmax are the
minimum and maximum torques of the actuators. Based on
the optimal decision variables F*c and δ€q+, we can provide the
feedforward torque command as follows:

Γ̂
d � S M q( )€q+ + B q, _q( ) − Jc q( )⊤F+

c( ) (6)

Where €q+ � €qd + Kh
peq + Kh

d _eq + δ€q+. Using the above desired

torque command Γ̂
d
, we can compute the low-level joint torque

command in (2).

2.2 Closed-Loop Analysis Without External
Perturbations
We analyze the closed-loop behavior of the robotic system.
Substituting (6) into (2) we get:

Γcmd � S M q( ) €̂q + B q, _q( ) − Jc q( )⊤F+
c( ) (7)

Where €̂q � €qd + K̂peq + K̂d _eq + δ€q+, K̂p � (Kh
p + Kp), and

K̂d � (Kh
d + Kd). By substituting the command in (7) into the

full-body dynamics in (1), the closed-loop dynamics become:

Mvv Mva

M⊤
va Maa

[ ] €qv
€qa

[ ] � dv

da
[ ], (8)

With

dv � SvJc q( )⊤Fc − Bv,
da � M⊤

va €̂qv +Maa €̂qa + SJc q( )⊤ Fc − F+
c( ) (9)

Where subscriptions (.)v ∈ R6 and (.)a ∈ Rnu denote the
properties for virtual and actuated joints, respectively.
Virtual joints are those corresponding to degrees of freedom
for the floating base whereas actuated joints correspond to
motorized robot articulations. As such, we define a selection
matrix for the virtual joints, Sv � [I6×6 06×nu] ∈ R6×n. We also
introduce a matrix called the Schur Complement of Maa in
M(q) as Maa,s � Mvv −MvaM−1

aaM
⊤
va. Since M(q) is positive

definite and Maa is invertible, the matrix Maa,s is also
invertible. The actuated joint acceleration can be expressed
as follows:

€qa � M−1
aada +M−1

aaM
⊤
vaM

−1
aa,s MvaM

−1
aada − dv( )

� €̂qa + Δc (10)

Where Δc � M−1
aa(M⊤

va( €̂qv − €qv) + SJc(q)⊤(Fc − F+c )). Assuming
that the optimal decision variable satisfies Fc � F+c and €̂qv � €qv
with perfect compensation for the Coriolis/centrifugal and
gravitational forces, we can decouple the joint space dynamics:
Δc � 0. However, the optimal decision variable F+c relies on the
robot model and there is no direct feedback control-loop for
regulating the contact force error Fc − F+c . Also, Δc becomes
significant when Centroidal dynamics are not precisely controlled
due to external disturbances, since both €qv and Fc significantly
affect the Centroidal dynamics of the robot. So the above
assumptions are frequently invalid in the real world. This is
the reason to introduce the error Δc in (10). Then, we can
approximately decompose the closed-loop dynamics in the
joint space as follows:
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€qi � €qfi + k̂pi q
d
i − qi( ) + k̂di _qdi − _qi( ) + Δci (11)

Where €qfi � €qdi + δ€q+i , k̂pi � kpi + khpi
, and k̂di � kdi + khdi for all i ∈

{7, . . ., n}. qi, _qi, and €qi represent the joint position, velocity, and
acceleration values for the ith joint, respectively. Also, Δci is the
ith component of Δc. The relationships between the natural
frequency, Wn, and the PD gains are defined as W2

n � k̂pi and
2ζWn � k̂d, respectively, where ζ denotes the damping ratio. To
achieve critical damping, the derivative gain must be, k̂di � 2





k̂pi

√
.

Based on this analysis, it is possible to obtain the gain matrices of
the whole-body control to achieve stable closed-loop behavior.

3 PROPOSED GAIN ADAPTATIONMETHOD

Our online gain adaption approach considers robots with
unknown ground reaction forces on their feet as well as
unknown external forces applied to their bodies. We use four
steps to tune the feedback gains in WBC as shown in Figure 2.
First, we obtain a solution for the ground reaction forces using the
optimization problem (5) as shown in Figure 2A. Second, given
current joint position and velocities, the centroidal dynamics are
computed, discretized and approximated as shown in Figure 2B.
In Figure 2C, we show the estimation of unknown external forces
applied to the robot’s body using the previously computed
ground contact forces and centroidal robot dynamics. Lastly,
we test the stability of the robot considering the estimated forces
and contacts. In turn the feedback gains are adapted to stabilize
the robot under the external disturbance, as shown in Figure 2D.
This section describes the detailed process of our approach.

3.1 Closed-Loop Behavior With External
Forces
Next, we consider an additional unknown external force applied
to the robot’s body, such as a force acting on the torso or pelvis.
The optimization problem (5) cannot directly incorporate the

unknown perturbation. Given such perturbations, the rigid-body
dynamics of the robot changes as follows:

M q( )€q + B q, _q( ) � S⊤Γ + J⊤c q( )Fc + J⊤t q( )Ft (12)

Where Ft ∈ R6 denotes the unknown external force acting on the
robot’s body and Jt(q) ∈ R6×n is the corresponding Jacobian.
Based on Proposition 1, the closed-loop behavior of the system
with the control torque input becomes:

€qa � €̂qa + Δc +M−1
aaSJt q( )⊤Ft

� €̂qa + Δc + S+Em( )M q( )−1S⊤SJt q( )⊤Ft︸︷︷︸
Sψt

(13)

Where Em � [−M−1
aa,sM

⊤
vaM

−1
vvMvv,s 0]. When the external disturbance is

unknown, it is impossible to compute Δc and Ft, separately.
Therefore, we consider the effect of the external disturbance
using Sψt.

Proposition 1. Given a matrix E � E1 E12

E⊤
12 E2

[ ]∈ Sn++ where

E1 ∈ Rn1×n1 , E2 ∈ Rn2×n2 , and n � n1 + n2, E−1
2 can be expressed

as (E + S2)GS⊤2 where G � E−1 and S2 � [0n2×n1 In2×n2] ∈ Rn2×n.
The detailed proof of Proposition 1 is provided in Appendix.

We introduce an estimated external force F̂t � [f̂⊤t , τ̂⊤t ]⊤
satisfying the following equality: flushleft

Sψt � SM q( )−1ΣaJt q( )⊤F̂t (14)

Where f̂ t ∈ R3 and τ̂t ∈ R3 denote the estimated force and torque
of the unknown disturbance, respectively. Also,

Σa � S⊤S � 06×6 06×nu
0nu×6 Inu×nu
[ ]. Unfortunately, we cannot simply

express Sψt in terms of q and _q since we need an additional
explicit mapping between F̂t and these joint state variables.

Our approach is to employ robot centroidal dynamics to
convert the external forces into corresponding stiffness and
damping forces in the joint space. We can approximate the
CoM velocity, acceleration, and the time derivative of its
angular momentum with a discrete time interval Δt Dai et al.
(2014) as follows:

FIGURE2 |Our approach consists of: (A) obtaining contact forces viaWBLC. (B)Computing Centroidal dynamics using the current joint configuration and velocity.
(C) Estimating unknown external forces with respect to the robot’s body frame. (D) Online gain adaptation with stability analysis.
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_p ≈ 2Δt−1 p − pp( ) − JCoM qp( ) _qp,
€p ≈ Δt−1 _p − JCoM qp( ) _qp( ),

_h q, _q( ) ≈ Δt−1 h q, _q( ) − h qp, _qp( )( ) (15)

Where p, h(q, _q), JCoM(q) denote the position of CoM, its angular
momentum, and its Jacobian, respectively. qp, _qp, pp, and _pp are
the joint position, the joint velocity, the CoM position, and the
CoM velocity in the previous time step, respectively. First, we
estimate the linear force corresponding to the external
disturbance, ft, using the centroidal dynamics and CoM
acceleration:

f̂ t � Mr €p − g( ) −∑m
ℓ�1

f+
ℓ

(16)

Where f+
ℓ
∈ R3 represents the linear force part for the ℓ-th

contact among F+c from WBC. Also, Mr and g denote the
total mass of the robot and the gravity vector, respectively. In
addition, τ̂t can be estimated by using the centroidal momentum
equation and f̂ t.

τ̂t � _h q, _q( ) −∑m
ℓ�1

rℓ × f+
ℓ
+ τ+

ℓ
( ) − rt × f̂ t (17)

Where τ+
ℓ
∈ R3 denotes the torque part for the ℓ-th contact

among F+c . In turn, we can re-express the closed-loop dynamics
(13) using the estimated external force F̂t. We cannot decouple
the closed-loop dynamics due to the term ψt.

3.2 The Proposed Gain Adaptation
Approach
Our proposed method consists of decoupling the closed-loop
dynamics by approximating ψt. Our goal is to obtain a pair of PD
gains to ensure that the approximated closed-loop dynamics are
critically damped, i.e.

ψt ≈ ~Kpq + ~Kd _q +Ωt (18)

Where ~Kp � diag(~kp1, . . . , ~kpn), ~Kd � diag(~kd1, . . . , ~kdn), and Ωt

are approximated PD gain matrices and a constant bias term,
respectively. To obtain this approximation we have used the
centroidal dynamics and the external force approximations
specified further above. First, p is calculated using a first order
approximation:

p ≈ pp + JCoM qp( ) q − qp( ) (19)

In turn the estimated external force f̂ t can be expressed in joint
space as follows using (15) and (16):

f̂ t q, _q( ) � MrJCoM qp( )Lf q, _q( ) −Mrg −∑m
ℓ�1

f+
ℓ
,

Lf q, _q( ) � 2 q − qp( )
Δt2 − 2 _qp

Δt � Kf
pq + Kf

d _q + ef

(20)

Where both matrices, Kf
p � diag(kfp1

, . . . , kfpn
) and

Kf
d � diag(kfd1 , . . . , k

f
dn
), represent gain matrices. Using

established adaptive techniques we chose the proportional gain

as kfpi
� ηfi (qdi − qpi ) and plugging it in the second equation

shown in (20), we get kfdi � ξfi Δtkfpi
where ηfi and ξfi

represent positive coefficients. We also get ef as:

ef � 2I − ΔtKf
pd( )€qf − Kf

pd _q
p − Kf

pq
p (21)

Where Kf
pd � ΔtKf

p + Kf
d . In turn Eq. 20 becomes:

f̂ t q, _q( ) � ~K
f

pq + ~K
f

d _q + γf (22)

Where ~K
f
p � MrJCoM(qp)Kf

p , ~K
f
d � MrJCoM(qp)Kf

d , and γf �
MrJCoM(qp)ef −Mrg −∑m

ℓ�1f
+
ℓ
.

Secondly, we estimate (15) using the first order
approximation:

h q, _q( ) ≈ h qp, _qp( ) +HG qp, _qp( ) q − qp( ) + AG qp( ) _q − _qp( ),
AG q( ) � zh

z _q
q, _q( ), HG q, _q( ) � ∑n

k�1

zAk
G q( )
zq

_qk

(23)

Where Ak
G(q) is the kth column vector of AG(q). Based on the

above approximations, the estimated external torque can be
expressed as follows:

τ̂t q, _q( ) � HG qp, _qp( )Lτ q, _q( ) + AG qp( )€qf −∑m
ℓ�1

rℓ × f+
ℓ
+ τ+

ℓ
( )

−rt × f̂ t q, _q( ),Lτ q, _q( ) �Kτ
pq + Kτ

d _q + eτ (24)

Where both matrices, Kτ
p � diag(kτp1

, . . . , kτpn
) and

Kτ
d � diag(kτd1 , . . . , kτdn ), are gain matrices for estimating the

external torque. More specifically, each component can be
computed using adaptive control techniques in Åström and
Wittenmark (2013) as: kτpi

� ητi (qdi − qpi ) and kτdi � ξτi Δtkτpi
,

where ητi and ξτi represent positive coefficients. The term eτ is
described as eτ � (ΔtI − ΔtKτ

pd)€qf + (I − Kτ
pd) _qp − Kτ

pq
p where

Kτ
pd � ΔtKτ

p + Kτ
d. Suppose rℓ and rt are constant then we can re-

write the estimated τ̂t as:

τ̂t q, _q( ) � ~K
τ

pq + ~K
τ

d _q + γτ (25)

Where ~K
τ
p � HG(qp, _qp)Kτ

p − skew(rt) ~Kf
p and

~K
τ
d � HG(qp, _qp)Kτ

d − skew(rt) ~Kf
d . The detailed γτ is

γτ � HG qp, _qp( )eτ − rt × γf −∑m
ℓ�1

rℓ × f+
ℓ
+ τ+

ℓ
( ) + AG qp( )€qf.

(26)

We can construct F̂t using selection matrices Sf � [I3×3, 03×3]⊤
and Sτ � [03×3, I3×3]⊤ as follows:

F̂t � Sf f̂ t q, _q( ) + Sτ τ̂t q, _q( ) � ~K
s

pq + ~K
s

d _q + γs (27)

Where ~K
s
p � Sf ~K

f
p + Sτ ~K

τ
p, ~K

s
d � Sf ~K

f
d + Sτ ~K

τ
d, and γs � Sfγf +

Sτγτ. Using the above estimated external force F̂t, we approximate
ψt as follows:

ψt ≈ M qp( )−1ΣaJt qp( ) ~K
s

pq + ~K
s

d _q + γs( )
≈ Ẑpq + Ẑd _q + Ω̂t

(28)
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Where Ẑp and Ẑd are diagonal matrices. We define Ẑp �
diag(zp1, . . . , zpn) and Ẑd � diag(zd1, . . . , zdn) where zpi and
zdi are the ith diagonal components of M(qp)−1ΣaJt(qp) ~Ks

p
and M(qp)−1ΣaJt(qp) ~Ks

d, respectively. The last term takes the
form Ω̂t � M(qs)−1Jt(qp)⊤γs. Since K̂p, K̂d, Ẑp, and Ẑd are
diagonal matrices, the closed-loop dynamics in actuated joint
level space becomes:

€ea � K̂
a

p − Ẑ
a

p( )ea + K̂
a

d − Ẑ
a

d( ) _ea + �Ωt,a (29)

Where eqa � qda − qa, _ea � _qda − _qa, and €ea � S(€qd + δ€q+) − €qa.
Also, we define K̂

a
p � SK̂p � diag(k̂p7, . . . , k̂pn), K̂

a
d � SK̂d �

diag(k̂d7, . . . , k̂dn), Ẑ
a
p � diag(zp7, . . . , zpn), and Ẑ

a
d � diag(zd7,

. . . , zdn), and �Ωt,a � S(Ω̂t − Ẑpqd − Ẑd _q
d).

We define the state ν � [e⊤a , _e⊤a ]⊤ and express the state-space
model of the above dynamics equation as follows:

_ν � 0n In
−K̂a

p + Ẑ
a

p −K̂a

d + Ẑ
a

d
[ ]︸︷︷︸

V

ν + 0n×1
�Ωt,a

[ ]. (30)

Properly choosing ηfi , ξ
f
i , η

τ
i , and ξ

τ
i , we can make �Ωt,a negligible.

Then, the matrix V should be Hurwitz to guarantee that the
closed-loop state model is exponentially stable. To compute the
characteristic equation of the matrix V, we express the
determinant of the matrix V − λI2n as follows:

det
−λIn In

−K̂a

p + Ẑ
a

p −K̂a

d + Ẑ
a

d − λIn
[ ]( )

� λ−1det K̂d − Ẑ _q + λ−1 K̂p − Ẑq( ) + λIn×n( )
� det⎛⎝λ−1 K̂

a

d − Ẑ
a

d( ) + λ−1 K̂
a

p − Ẑ
a

p( )( )︸︷︷︸
X

+In⎞⎠,

Which means that det(V − λI2) � det(λ−1X + In). It is
complicated to obtain analytic forms of the eigenvalues of V.
For this reason, we can compute the determinant above using the
Leibniz formula described in Bhatia (2013).

det λ−1X + In( ) � 1 + λ−1trace X( ) +O λ−1( )2( ) (31)

Where O(.) represents the big-O notation. Using the above
formulation, the characteristic equation can be re-written as:

det V − λI2n( ) � 1 + λ−1trace X( ) +O λ−1( )2( ) � 0. (32)

All solutions of the above characteristic equation λ should be
negative to guarantee that the matrix V is Hurwitz. Such analysis
could be conducted via numerical computation given the gain
matrices. However, in this paper, we aim at adaptive feedback
gains of the controller so that we obtain ~K

a
p � Ẑ

a
p and ~K

a
d � Ẑ

a
d. In

turn the term O((λ−1)2) vanishes. We can obtain the analytical
expression of the approximated characteristic equation as follows:

λ2 + λtrace K̂
a

p − ~K
a

p( ) + trace K̂
a

d − ~K
a

d( ) � 0. (33)

This condition will allow us to make the closed-loop system stable.
Condition 1. The following condition makes the matrix V

Hurwitz: ∑n
i�7k̂pi − zpi > 0 and ∑n

i�7k̂di − zdi > 0. Without any

adaptation, these condition should be fulfilled to make the closed-
loop system asymptotically stable given desired feedback gains.

We can approximately decouple the dynamics of (29) in the
joint space as follows:

€qi + k̂di − zdi( ) _qi + k̂pi − zpi( )qi � ~F+

i (34)

Where ~F+

i � €qfi + k̂piq
d
i + k̂di _qi + Ω̂t(i). We enforce that the joint

space dynamics are critically damped given zpi and zdi for all i ∈
{7, . . ., n}. For the above system, the following relationships are
obtained in terms of the natural frequency and the damping ratio:
k̂pi − zpi � �W2

n and k̂di − zdi � 2ζ �Wn. Since we already know all
gains and coefficients, k̂pi, k̂di, zpi, and zdi, ζ can be determined a
priori. We can compute adaptive variables εpi and εdi to make
�Wn � Wd

n and ζ � ζd.

εpi � Wd
n( )2 + zqi − k̂pi,

εdi � 2ζd












k̂pi + εpi − zqi

√
+ zdi − k̂di.

(35)

Condition 2. Since Wn is a positive real number, it is always
true that k̂pi + εpi − zpi > 0 and k̂di + εdi − zdi > 0 in the adaptive
system. In such case: ∑n

i�7k̂pi + εpi − zpi > 0 and∑n
i�7k̂di + εdi − zdi > 0. However, if there are no εpi and εdi

satisfying the equation above, the motion bandwidth cannot be
stably achievable under the external force.

Based on the previous adaptation scheme, we replace the
WBLC khpi

, khdi by
�k
h
pi
, �k

h
di
in the optimization problem where �k

h
pi
�

khpi
+ εpi and �k

h
di
� khdi + εdi. These feedback gains are limited in

practice. Since relying on the contact forces, the adaptive gains
might abruptly increase during contact transition or applying an
impact force. For such reason, we consider the following
additional condition:

Condition 3. We set the ranges of εp ∈ [εmin
p , εmax

p ] and
εd ∈ [εmin

d , εmax
d ] for real implementation in robotic systems.

After testing all conditions, we update the gains in WBLC. Then,
the control command torque is obtained without further modifications
given the task specifications. Algorithm1 summarizes the entire process
of how to update the feedback gains in WBLC.

Algorithm 1. Proposed Gain Adaptation Algorithm

Data: q, _q, qp, _qp, xdk , _x
d
k , €x

d
k ∀k ∈ {1, . . . , N}

Result: Γcmd

F̂
+

c ← WBLC in (5)
JCoM ← with qp

~K
f
p , ~K

f
d ,γf ← (22)

h, HG, AG ← with qp and _qp

~K
τ
p, ~K

τ
d, γτ ← (25)

~K
s
p, ~K

s
d, γs ← (27)

Ẑp, Ẑd ← (28)
εpi, εdi ∀i ∈ {7, . . . , n} ← (35)
if Condition 1, 2, and 3 are satisfied then

�k
h
pi
� khpi

+ εpi, �k
h
di
� khdi + εdi ∀i ∈ {7, . . . , n}

end
Kh

p and Kh
d in (5) ← �k

h
pi
and �k

h
di

Γcmd ← with the updated Kh
p and Kh

d
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4 SIMULATIONS AND EXPERIMENTS

In this section, our proposed adaptive approach is validated by
demonstrating both simulations and experiments using a 10 DOF
liquid-cooled bipedal robot called Draco2 and a full-body humanoid
robot called Valkyrie. SinceDraco2 is a line-feet biped robot, it is hard
for it tomaintain its balance during the double support phase robustly.
So, in section 4.1, we focus on showing how to stabilize the robot’s
body during the double support phase while an external force is
applied to its pelvis, as shown in Figure 3. In turn we demonstrate
experimentally that our online gain adaptationmethod can be applied
in real-time to a physical platform as discussed in section 4.2. Using
Valkyrie which uses flat feet for balancing, we implement walking
simulations to verify the effectiveness of the proposed online gain
adaptation approach when there exists long-term perturbations
instead of fast impacts. This study is described in section 4.3. We
employ our open-source software architecture called PnC1 (Planning
and Control).

4.1 Draco2 Simulations
Using Draco2, we implement three simulations to show that the
proposed approachmakes the robotmore stable: 1) pushing the pelvis
in the double support phase, 2) pushing the pelvis while swinging
CoM position, 3) applying an impact force to the pelvis in the double
support. For whole-body control, we define these tasks: xCoM, xbase, o,
xfeet, and xjoint, which represent tasks for controlling the position of the
robot’s CoM, the orientation of its floating base, the position and
orientation of its feet, and the joint configuration, respectively.

4.1.1 Pushing Force Applied to the Pelvis
The first simulation aims to control the position of the robot’s
CoM while applying a pushing force at the pelvis. We define the
desired location of the CoM as [3.80, ×, 10–5, −0.167, 0.7] m in the
double support phase. The external force is applied to the

y-direction of the pelvis with an amplitude of 12 N during the
interval [10, 15] s. We design the appropriate bounds for the gain
margins as εmax

p � 350, εmin
p � −100, εmax

d � 60, and εmin
d � −10.

As the snapshots show in Figure 3A, gain adaptation reduces
the adverse effects of external forces on the robot’s behavior.Figure 3B
shows the CoM positions when the robot is controlled with and
without the proposed gain adaptation scheme. For a more precise
analysis, we compare the maximum variations of the robot’s CoM
position: max(xCoM) − min(xCoM). Without the proposed approach,
[0.013 9, 0.081 0, 0.012 4] m is the maximum amplitude of the
variation. When using our proposed adaptation approach the
amplitude reduces to [0.029, 0.069 5, 0.009 8] m. In addition, we
compare the maximum distances of the position of the CoM dCoMmax �
‖xdCoM − xfarCoM‖ where xfarCoM denotes the farthest position from the
desired position while the external force is acting on the robot. The
values of dCoMmax with and without the proposed adaptive approach are
0.0709m and 0.0835m, respectively. Therefore dCoMmax with the
proposed approach is 84.91% of that without our method.
Although the difference is small, it is significant for legged robots
having a small support polygon such as Draco2. The proposed
approach results in the adaptation of the feedback gains in WBLC
as shown in Figure 4A. Also, the configuration of the robot for each
case is represented in Figure 4B. As shown in the results, the adapted
gains contribute to stabilize the robot so that the configuration
becomes less oscillatory. More specifically, the settling times of the
simulations with and without the proposed approach are 18.16 and
10.2 s, respectively.

4.1.2 Pushing Force While Swinging
In this second simulation, we implement a behavior consisting of
swinging the position of the robot’s CoM in double support phase
while an external force is acting on the pelvis. We generate a
sinusoidal reference for the CoM with 0.03 m amplitude and
0.5 Hz frequency. Figures 5A,B show snapshots of the
simulations. As shown in Figure 5A, the controller with fixed
gains falls due to the effect of the external force. On the other
hand, the adaptive gains prevent the robot from losing balance, as

FIGURE 3 | (A) Snapshots of control simulations: the upper and lower figures show balancing behaviors with and without gain adaptation, respectively. A black star
marks the edge point on the hip shell as a measurement reference. (B) Comparison between the positions of the robot’s CoM using standard WBLC versus adaptive
WBLC, where the desired x and y positions of the CoM is the center position between two feet [3.80, ×, 10–5, −0.167] m, and the desired height of the CoM is 0.7 m.

1PnC package: https://github.com/junhyeokahn/PnC
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shown in Figure 5B. The positions of the CoM controlled by
WBLC with and without adaptive gains are compared in
Figure 5C. The robot with the adaptive gains can track the
trajectory of the CoM while maintaining solid contacts with
the ground. However, employing WBLC without adaptation
fails to control the position of the CoM as shown in
Figure 5C, and as a result the right foot starts moving away
from contact around 14 s as shown in Figure 5D.

4.1.3 Impact Force
The last simulation compares the response of the robot due to an
impact force with and without the proposed adaptive control
approach. An impact force with an amplitude 700 N over 0.01 s
from 10 s is applied. Figure 6 shows the position of the CoM in
response to the impact force, and the impact timing is showing as
marked lines. We compare the settling times of the y position of
the CoM, which are 11.194 and 4.903 s without and with the
proposed approach, respectively. Also, the peak of the y position
of the CoM with adaptive gains, − 0.207 6 m, is smaller than that
without the proposed approach, − 0.219 0 m. Based on these
results, it is verified that the proposed approach makes the robot
more robust to impact forces.

4.1.4 Addition Simulations
Here, we increase the amplitude of the external disturbances with
respect to the previous simulations to analyze the effectiveness of

our method. Firstly, we increase the external pushing force
from −12 N to −18 N with respect to the forces used in Section
4.1.1. Without the proposed adaptation, the robot falls when
applying −14 N due to the effect of the pushing force. However,
the robot with the adapted gain scheme keeps its balance while
tolerating external forces up to −17 N. The robot falls when
applying −18 N. Secondly, we increase the pushing force from
−10 N to −17 N while swinging the CoM position as shown in
the simulation in Section 4.1.2. The robot with fixed gains
loses its balance when the pushing force is −12 N. By contrast,
our method enables the robot to swing the CoM position
robustly while increasing the external force up to −16 N.
These results indicate that the robot’s balance is more
fragile when applying the external force during dynamic
motions rather than static ones. Lastly, we repeat the impact
test of Section 4.1.3 with different amplitudes of the impact
forces. The robot without our method slips and falls when the
amplitude of the impact is −1500 N. In contrast, our gain
adaptation scheme keeps the robot standing up to −1900 N
of impact force. Overall, these results confirm that our
proposed gain adaptation method yields more robust
balancing capabilities against external disturbances than
using fixed gains.

For more detailed analysis of the results, we calculate the
Integral Absolute Error (IAE) of the CoM task with respect to the
external forces during the perturbation period:

FIGURE 4 | Simulation results of pushing the pelvis: (A) The adapted gains of the WBLC in the joint level. (B) The configuration of the robot controlled by WBLC.
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IAE � ∫tf

ti

‖xdcom t( ) − xcom t( )‖dt (36)

Where [ti, tf] denotes the time interval for the perturbation.
Figure 7 shows the IAE values for all simulation results
concerning the various amplitudes of the external
disturbances. We repeat the same simulation scenarios shown
in Sections 4.1.1 (push while standing: Figure 7A), 4.1.2 (push
while swinging the CoM position: Figure 7B), and 4.1.3 (impact
while standing: Figure 7C). As shown in Figure 7, our proposed
method results in smaller IAE values compared to fixed-gain
WBLC. The comparison of the IAE values shows that our
proposed approach reduces the task tracking error and makes
the robot more robust regarding disturbance rejection.

Figures 8A,B represent the estimated disturbances F̂t when
applying the pushing force (Section 4.1.1) and the impact
disturbance (Section 4.1.3), respectively. The mean of the
estimated force F̂t in Figure 8A is F̂t,mean � [−1.966,
−8.626, 0.667, −2.981, 0.483, 0.297] N. The estimated
amplitude is approximately 72% of the real external force.
Therefore our estimate of the pushing force disturbance is a
rough approximate, but it has the advantage that it does not
require external F/T sensors to measure the contact forces. By
contrast, a limitation of this estimation is that the impact
disturbance cannot be precisely estimated as shown in
Figure 8B, since we employ the centroidal dynamics and the
WBLC formulas to estimate F̂t. The peak value of the estimated
impact in the lateral direction F̂t,[y] is only −5.2 N. Additional

FIGURE 5 | Simulation results of CoM swing with unknown external force: (A) Snapshots of the simulation swinging CoM without the proposed gain adaption. (B)
Snapshots of the simulation with the proposed gain adaptation. (C) The Positions of the robot’s CoMwhile performing a swingingmotion: x, y, and z position of the CoM,
(D) The right foot position without the adaptive gains.

FIGURE 6 | Simulation results of impact test: (A) the desired position of the CoM is the same as that for the pushing scenario. An impact force is applied to the robot
with an amplitude of 700 N and duration 0.01 at 10 s. (B) The position of the robot’s CoM.
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impact models and information such as impact time are required
to compute the accurate impact between rigid-bodies Stewart
(2000), however, this is out of the scope in this paper.

4.2 Draco2 Experiments
In this section, we verify the proposed approach using the real
Draco2 robot. The main goal of these experimental evaluations is
to show that the simulation results can be reproducible in real
hardware. We select two experimental scenarios, which are to
keep the balance under pushing and impact forces and evaluate
them in the real hardware as shown in Figure 9. The robot is
standing upright in the double support phase, and we push and
hit the handle at the pelvis of the robot.

The positions of the CoM are shown in Figure 9 for both
experimental scenarios. As shown in Figure 9, the robot is
standing up while tracking the predefined desired CoM
position, which is identical to the desired CoM position
described in Sections 4.1.1, 4.1.3. For the first scenario, we
push the robot at 10.6 and 25.8 s twice, which is shown as

marked zones in Figure 9B. Although the robot’s CoM
position has fluctuated in the y-direction, the robot does not
fall and keeps its balance. Figure 9D shows the position of the
CoM for the second scenario. We hit the robot’s pelvis with the
rubber hammer at 8.5 s, which is shown as marked lines in
Figure 9D. Note that the proposed approach makes the robot
stable and keeps its balance in double support against the external
perturbations as anticipated. Without our adaptation approach, it
is not possible to keep the robot balanced when disturbed as
shown in our Supplementary Video. Since we could not directly
measure the pushing and impact disturbances, we estimate F̂t as
shown in Figures 9E,F. More specifically, the peak and mean
values of the estimated pushing external disturbances in two
pushing time intervals shown in Figure 9E are F̂

peak
t,[y] �

[27.14, 22.41] N and F̂
mean
t,[y] � [10.8, 8.6] N, respectively.

Figure 9F shows the estimation of the external disturbance
with a peak in the y direction of 6.8 N. The experimental
results show that our approach is effective in the real
hardware under similar conditions to the simulations.

FIGURE 7 | IAE values corresponding to simulation results with different levels of external disturbances: The simulation scenarios are those described in Sections
4.1.1 (A), 4.1.2 (B), and 4.1.3 (C). To calculate the IAE values of the impact simulation (C), we use the same time interval [10, 15] to cases (A,B).

FIGURE 8 | Estimation of unknown external forces using the contact force formula provided byWBLC: (A) Pushing force disturbance (− 12 N in the y direction), (B)
Impact force disturbance (− 700 N in the y direction).
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4.3 Valkyrie Simulations
For simulated walking behaviors, we generate a reference
trajectory for the robot’s CoM using the three-dimensional
Divergent Component of Motion (DCM) Englsberger et al.
(2013). In addition, we define multiple tasks to control the
robot Valkyrie using WBLC: xCoM, xAM, xpelvis, o, xrf, and xlf
which represent the tasks for controlling the position of the CoM,
the body’s angular momentum, the orientation of the pelvis, and
the position and orientation of the right and left feet, respectively.
Additionally, we assume that the desired angular momentum
change is zero during the planning and control calculations.

4.3.1 DCM Planner and Contact Transition
This section briefly introduces a locomotion planner based on
DCM and the parameters that we use. DCM is defined as a point
that lies ahead of the position of the CoM:

ξ � xCoM + b _xCoM (37)

Where b > 0 denotes the time constant of the DCMdynamics. We
generate a desired DCM trajectory as discussed in Englsberger
et al. (2013) and convert it to a CoM trajectory. Given walking
parameters, the reference DCM can be computed at a time step t,
ξref(t), in turn we can obtain _xdCoM(t) and xdCoM(t) using Euler
integration:

_xdCoM t( ) � −1
b

xdCoM t − Δt( ) − ξref t( )( ),
xdCoM t( ) � xdCoM t − Δt( ) + _xdCoM t( )Δt

(38)

Where Δt is the time increment. The reference DCM and feet
trajectories are interpolated using a polynomial function and
B-spline.

FIGURE 9 | Experiment results with the same scenarios with the simulations in 4.1.1 and 4.1.3: pushing (A,B) and impacting (C,D) the pelvis of Draco2 in double
support phase. The estimated external disturbance F̂t is computed when pushing (E) and impacting (F) the robot.
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FIGURE 10 | Snapshots of simulations for walking while an external force exists: (A)walking without the proposed gain adaptation, (B)walking with the online gain
adaptation.

FIGURE 11 |Simulation results of walking with an external force: (A) positions of CoM and feet in Cartesian coordinate, (B) the robot’s CoMposition, (C) the robot’s
feet positions.
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One of the advantages of WBLC is that we do not need to
change the optimization problem to achieve smooth contact
transitions. Using WBLC, it is possible to ensure smooth
transitions between the support phases by changing the
weighting matrices in the objective function in the
optimization problem. The weighting matrix for the contacts
Wc are interpolated as follows:

Wupdate
c � 1 − s t( )( )Wold

c + s t( )Wnew
c (39)

Where Wold
c and Wnew

c denote the weighting matrices before and
after contact transition. s: R1[0, 1] can be a monotonously
increasing function of time from 0 to 1.

4.3.2 Pushing Force While Walking
We implement simulations of our method when walking with
external pushing forces. Here Valkyrie walks five steps forward.
An unknown lateral force is applied to the pelvis of the robot with
an amplitude of 100 N during the interval [6.5, 8.5] s. For DCM
planning, the nominal height of the CoM is 1.015 m. The single
support swing time and the transition time are set to 0.75 and
0.45 s, respectively. The length of the subsequent steps is set
to 0.2 m.

Figure 10 shows snapshots of walking simulations. Without
our gain adaptation approach, the robot tilts and falls due to the
disturbances, as shown in Figure 10A. In contrast, the robot is
able to walk forward against the external forces when using our
proposed method (see Figure 10B). The detailed simulation
results are shown in Figure 11. In Figure 11A, we depict the
positions of the CoM and both feet in Cartesian space.
Figure 11A shows that the robot with gain adaptation can
track the preplanned trajectories before and after the
perturbation. The exact CoM position and foot locations are
shown in Figures 11B,C. After standing upright, the initial CoM
position of the robot is [0.521 2, 0.512 2, 1.020 7] m. With the
adapted gains, the robot’s CoM reaches the goal destination
[0.950 7, 0.763 2, 1.017 8] m. The center position of the
feet also changes from [0.520 7, 0.512 1, 0] m to [0.954 2, 0.763
3, 0] m. However, without the proposed approach, the robot’s feet
start to move slightly in the second swing phase of the right
foot, as shown in Figure 11C. Also, the CoM position cannot
be controlled from that moment. Then the right foot detaches
from the ground at 8.2 s although it should remain on the
floor. Note that these simulations show robust performance
of the proposed underlying approach against unknown
external force disturbances.

5 CONCLUSION

This paper presents extensive analysis, algorithms, and
experimentation for the robust and adaptive employment of
whole-body controllers in legged robots. The proposed
approach devises a strategy to adapt feedback control gains of
WBLC in response to disturbances. When a pushing force or
impact occurs, the desired feedback gains are computed given
nominal natural frequency and damping ratio. Subsequently, we
test the theory to achieve stability both in simulation and
experimental evaluations. Thus, our proposed approach is
validated in both simulation and experimentation during
double support balancing under pushing and impacting forces.
Also, we implement walking simulations using a DCM planner to
validate our method. The simulation and experimental results
show that the adaptive WBLC enables legged robots to keep their
balance against unknown external disturbances. We summarize
the results of Draco simulations to show the improved
performance in Table 1. Although we previously addressed
dynamic walking under pushing forces using WBLC, that
work was not adaptive and in turn relied solely on replanning.
In contrast, in this new work we have developed a framework for
adaptive WBLC that may require less reliance on replanning and
provide better stability and robustness. In the future, we will
extend this work to loco-manipulation behaviors and under
multiple external force disturbances.
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APPENDIX

Proof of Proposition 1
Since E is positive definite, E1, E2, E1,s, and E2,s are invertible where E1,s
and E2,s are Schur Complements of E1 and E2, respectively. It is
possible to express the partitioned matrices of G as follows:

G � G1 G12

G⊤
12 G2

[ ] � E−1
2,s −E−1

1 E12E
−1
1,s

−E−1
1,sE

⊤
12E

−1
1 E−1

1,s
[ ] (40)

Then, we get the following formula by comparing the expressions
of E with each Schur Complements:

E−1
2 � E−1

1,s − E−1
2 E⊤

12E
−1
2,sE12E

−1
2

� G2 − E−1
1,sE

⊤
12E

−1
1 E2,sG12

� E + S2( )GS⊤2
(41)

Where E � [−E−1
1,sE

⊤
12E

−1
1 E2,s 0] ∈ Rn2×n.
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